Abstract:Noise suppression (NS) algorithms are effective in improving speech quality in many cases. However, aggressive noise suppression can damage the target speech, reducing both speech intelligibility and quality despite removing the noise. This study proposes an explicit speech restoration method using a voice conversion (VC) technique for restoration after noise suppression. We observed that high-quality speech can be restored through a diffusion-based voice conversion stage, conditioned on the target speaker embedding and speech content information extracted from the de-noised speech. This speech restoration can achieve enhancement effects such as bandwidth extension, de-reverberation, and in-painting. Our experimental results demonstrate that this two-stage NS+VC framework outperforms single-stage enhancement models in terms of output speech quality, as measured by objective metrics, while scoring slightly lower in speech intelligibility. To further improve the intelligibility of the combined system, we propose a content encoder adaptation method for robust content extraction in noisy conditions.
Abstract:While many recent any-to-any voice conversion models succeed in transferring some target speech's style information to the converted speech, they still lack the ability to faithfully reproduce the speaking style of the target speaker. In this work, we propose a novel method to extract rich style information from target utterances and to efficiently transfer it to source speech content without requiring text transcriptions or speaker labeling. Our proposed approach introduces an attention mechanism utilizing a self-supervised learning (SSL) model to collect the speaking styles of a target speaker each corresponding to the different phonetic content. The styles are represented with a set of embeddings called stylebook. In the next step, the stylebook is attended with the source speech's phonetic content to determine the final target style for each source content. Finally, content information extracted from the source speech and content-dependent target style embeddings are fed into a diffusion-based decoder to generate the converted speech mel-spectrogram. Experiment results show that our proposed method combined with a diffusion-based generative model can achieve better speaker similarity in any-to-any voice conversion tasks when compared to baseline models, while the increase in computational complexity with longer utterances is suppressed.
Abstract:We propose a highly controllable voice manipulation system that can perform any-to-any voice conversion (VC) and prosody modulation simultaneously. State-of-the-art VC systems can transfer sentence-level characteristics such as speaker, emotion, and speaking style. However, manipulating the frame-level prosody, such as pitch, energy and speaking rate, still remains challenging. Our proposed model utilizes a frame-level prosody feature to effectively transfer such properties. Specifically, pitch and energy trajectories are integrated in a prosody conditioning module and then fed alongside speaker and contents embeddings to a diffusion-based decoder generating a converted speech mel-spectrogram. To adjust the speaking rate, our system includes a self-supervised model based post-processing step which allows improved controllability. The proposed model showed comparable speech quality and improved intelligibility compared to a SOTA approach. It can cover a varying range of fundamental frequency (F0), energy and speed modulation while maintaining converted speech quality.