Abstract:Computer Aided Diagnosis has emerged as an indispensible technique for validating the opinion of radiologists in CT interpretation. This paper presents a deep 3D Convolutional Neural Network (CNN) architecture for automated CT scan-based lung cancer detection system. It utilizes three dimensional spatial information to learn highly discriminative 3 dimensional features instead of 2D features like texture or geometric shape whick need to be generated manually. The proposed deep learning method automatically extracts the 3D features on the basis of spatio-temporal statistics.The developed model is end-to-end and is able to predict malignancy of each voxel for given input scan. Simulation results demonstrate the effectiveness of proposed 3D CNN network for classification of lung nodule in-spite of limited computational capabilities.
Abstract:India is agriculture based economy and sugarcane is one of the major crops produced in northern India. Productivity of sugarcane decreases due to inappropriate soil conditions and infections caused by various types of diseases , timely and accurate disease diagnosis, plays an important role towards optimizing crop yield. This paper presents a system model for monitoring of sugarcane crop, the proposed model continuously monitor parameters (temperature, humidity and moisture) responsible for healthy growth of the crop in addition KNN clustering along with SVM classifier is utilized for infection identification if any through images obtained at regular intervals. The data has been transmitted wirelessly from the site to the control unit. Model achieves an accuracy of 96% on a sample of 200 images, the model was tested at Lolai, near Malhaur, Gomti Nagar Extension.
Abstract:Leukemia is a hematologic cancer which develops in blood tissue and triggers rapid production of immature and abnormal shaped white blood cells. Based on statistics it is found that the leukemia is one of the leading causes of death in men and women alike. Microscopic examination of blood sample or bone marrow smear is the most effective technique for diagnosis of leukemia. Pathologists analyze microscopic samples to make diagnostic assessments on the basis of characteristic cell features. Recently, computerized methods for cancer detection have been explored towards minimizing human intervention and providing accurate clinical information. This paper presents an algorithm for automated image based acute leukemia detection systems. The method implemented uses basic enhancement, morphology, filtering and segmenting technique to extract region of interest using k-means clustering algorithm. The proposed algorithm achieved an accuracy of 92.8% and is tested with Nearest Neighbor (KNN) and Naive Bayes Classifier on the data-set of 60 samples.
Abstract:This article describes a comprehensive system for surveillance and monitoring applications. The development of an efficient real time video motion detection system is motivated by their potential for deployment in the areas where security is the main concern. The paper presents a platform for real time video motion detection and subsequent generation of an alarm condition as set by the parameters of the control system. The prototype consists of a mobile platform mounted with RF camera which provides continuous feedback of the environment. The received visual information is then analyzed by user for appropriate control action, thus enabling the user to operate the system from a remote location. The system is also equipped with the ability to process the image of an object and generate control signals which are automatically transmitted to the mobile platform to track the object.