Abstract:The worm gearbox is a high-speed transmission system that plays a vital role in various industries. Therefore it becomes necessary to develop a robust fault diagnosis scheme for worm gearbox. Due to advancements in sensor technology, researchers from academia and industries prefer deep learning models for fault diagnosis purposes. The optimal selection of hyperparameters (HPs) of deep learning models plays a significant role in stable performance. Existing methods mainly focused on manual tunning of these parameters, which is a troublesome process and sometimes leads to inaccurate results. Thus, exploring more sophisticated methods to optimize the HPs automatically is important. In this work, a novel optimization, i.e. amended gorilla troop optimization (AGTO), has been proposed to make the convolutional neural network (CNN) adaptive for extracting the features to identify the worm gearbox defects. Initially, the vibration and acoustic signals are converted into 2D images by the Morlet wavelet function. Then, the initial model of CNN is developed by setting hyperparameters. Further, the search space of each Hp is identified and optimized by the developed AGTO algorithm. The classification accuracy has been evaluated by AGTO-CNN, which is further validated by the confusion matrix. The performance of the developed model has also been compared with other models. The AGTO algorithm is examined on twenty-three classical benchmark functions and the Wilcoxon test which demonstrates the effectiveness and dominance of the developed optimization algorithm. The results obtained suggested that the AGTO-CNN has the highest diagnostic accuracy and is stable and robust while diagnosing the worm gearbox.
Abstract:The vibration analysis of the bearing is very crucial because of its non-stationary nature and low signal-to-noise ratio. Therefore, a novel scheme for detecting bearing defects is put forward based on the extraction of single-valued neutrosophic cross-entropy (SVNCE) to address this issue. Initially, the artificial hummingbird algorithm (AHA) is used to make the feature mode decomposition (FMD) adaptive by optimizing its parameter based on a newly developed health indicator (HI) i.e. sparsity impact measure index (SIMI). This HI ensures full sparsity and impact properties simultaneously. The raw signals are disintegrated into different modes by adaptive FMD at optimal values of its parameters. The energy of these modes is calculated for different health conditions. The energy interval range has been decided based on energy eigen which are then transformed into single-valued neutrosophic sets (SVNSs) for unknown defect conditions. The minimum argument principle employs the least SVNCE values between SVNSs of testing samples (obtained from unknown bearing conditions) and SVNSs of training samples (obtained from known bearing conditions) to recognize the different defects in the bearing. It has been discovered that the suggested methodology is more adept at identifying the various bearing defects.
Abstract:A non-parametric complementary ensemble empirical mode decomposition (NPCEEMD) is proposed for identifying bearing defects using weak features. NPCEEMD is non-parametric because, unlike existing decomposition methods such as ensemble empirical mode decomposition, it does not require defining the ideal SNR of noise and the number of ensembles, every time while processing the signals. The simulation results show that mode mixing in NPCEEMD is less than the existing decomposition methods. After conducting in-depth simulation analysis, the proposed method is applied to experimental data. The proposed NPCEEMD method works in following steps. First raw signal is obtained. Second, the obtained signal is decomposed. Then, the mutual information (MI) of the raw signal with NPCEEMD-generated IMFs is computed. Further IMFs with MI above 0.1 are selected and combined to form a resulting signal. Finally, envelope spectrum of resulting signal is computed to confirm the presence of defect.