Abstract:This paper reviews the large spectrum of methods for generating robot motion proposed over the 50 years of robotics research culminating in recent developments. It crosses the boundaries of methodologies, typically not surveyed together, from those that operate over explicit models to those that learn implicit ones. The paper discusses the current state-of-the-art as well as properties of varying methodologies, highlighting opportunities for integration.
Abstract:This paper aims to increase the safety and reliability of executing trajectories planned for robots with non-trivial dynamics given a light-weight, approximate dynamics model. Scenarios include mobile robots navigating through workspaces with imperfectly modeled surfaces and unknown friction. The proposed approach, Kinodynamic Replanning over Approximate Models with Feedback Tracking (KRAFT), integrates: (i) replanning via an asymptotically optimal sampling-based kinodynamic tree planner, with (ii) trajectory following via feedback control, and (iii) a safety mechanism to reduce collision due to second-order dynamics. The planning and control components use a rough dynamics model expressed analytically via differential equations, which is tuned via system identification (SysId) in a training environment but not the deployed one. This allows the process to be fast and achieve long-horizon reasoning during each replanning cycle. At the same time, the model still includes gaps with reality, even after SysID, in new environments. Experiments demonstrate the limitations of kinematic path planning and path tracking approaches, highlighting the importance of: (a) closing the feedback-loop also at the planning level; and (b) long-horizon reasoning, for safe and efficient trajectory execution given inaccurate models.
Abstract:In this paper we are proposing classification algorithm for multifrequency Polarimetric Synthetic Aperture Radar (PolSAR) image. Using PolSAR decomposition algorithms 33 features are extracted from each frequency band of the given image. Then, a two-layer autoencoder is used to reduce the dimensionality of input feature vector while retaining useful features of the input. This reduced dimensional feature vector is then applied to generate superpixels using simple linear iterative clustering (SLIC) algorithm. Next, a robust feature representation is constructed using both pixel as well as superpixel information. Finally, softmax classifier is used to perform classification task. The advantage of using superpixels is that it preserves spatial information between neighbouring PolSAR pixels and therefore minimises the effect of speckle noise during classification. Experiments have been conducted on Flevoland dataset and the proposed method was found to be superior to other methods available in the literature.
Abstract:This paper aims to improve the computational efficiency of motion planning for mobile robots with non-trivial dynamics by taking advantage of learned controllers. It adopts a decoupled strategy, where a system-specific controller is first trained offline in an empty environment to deal with the system's dynamics. For an environment, the proposed approach constructs offline a data structure, a "Roadmap with Gaps," to approximately learn how to solve planning queries in this environment using the learned controller. Its nodes correspond to local regions and edges correspond to applications of the learned control policy that approximately connect these regions. Gaps arise due to the controller not perfectly connecting pairs of individual states along edges. Online, given a query, a tree sampling-based motion planner uses the roadmap so that the tree's expansion is informed towards the goal region. The tree expansion selects local subgoals given a wavefront on the roadmap that guides towards the goal. When the controller cannot reach a subgoal region, the planner resorts to random exploration to maintain probabilistic completeness and asymptotic optimality. The experimental evaluation shows that the approach significantly improves the computational efficiency of motion planning on various benchmarks, including physics-based vehicular models on uneven and varying friction terrains as well as a quadrotor under air pressure effects.
Abstract:Estimating the region of attraction (${\tt RoA}$) for a robotic system's controller is essential for safe application and controller composition. Many existing methods require access to a closed-form expression that limit applicability to data-driven controllers. Methods that operate only over trajectory rollouts tend to be data-hungry. In prior work, we have demonstrated that topological tools based on Morse Graphs offer data-efficient ${\tt RoA}$ estimation without needing an analytical model. They struggle, however, with high-dimensional systems as they operate over a discretization of the state space. This paper presents ${\it Mo}$rse Graph-aided discovery of ${\it R}$egions of ${\it A}$ttraction in a learned ${\it L}$atent ${\it S}$pace (${\tt MORALS}$). The approach combines autoencoding neural networks with Morse Graphs. ${\tt MORALS}$ shows promising predictive capabilities in estimating attractors and their ${\tt RoA}$s for data-driven controllers operating over high-dimensional systems, including a 67-dim humanoid robot and a 96-dim 3-fingered manipulator. It first projects the dynamics of the controlled system into a learned latent space. Then, it constructs a reduced form of Morse Graphs representing the bistability of the underlying dynamics, i.e., detecting when the controller results in a desired versus an undesired behavior. The evaluation on high-dimensional robotic datasets indicates the data efficiency of the approach in ${\tt RoA}$ estimation.