Abstract:Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection. However, existing methods struggle to produce realistic images that have accurate nuclei boundaries and less artifacts, which limits the application in downstream tasks. To address the challenges, we propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization. The proposed approach uses the skeleton map of nuclei to integrate nuclei topology and separate touching nuclei. In the loss function, we propose two new contour regularization terms that enhance the contrast between contour and non-contour pixels and increase the similarity between contour pixels. We evaluate the proposed approach on the two datasets using image quality metrics and a downstream task (nuclei segmentation). The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets. By integrating 6k synthetic images from the proposed approach into training, a nuclei segmentation model achieves the state-of-the-art segmentation performance on TNBC dataset and its detection quality (DQ), segmentation quality (SQ), panoptic quality (PQ), and aggregated Jaccard index (AJI) is 0.855, 0.863, 0.691, and 0.683, respectively.
Abstract:Existing deep learning-based approaches for histopathology image analysis require large annotated training sets to achieve good performance; but annotating histopathology images is slow and resource-intensive. Conditional generative adversarial networks have been applied to generate synthetic histopathology images to alleviate this issue, but current approaches fail to generate clear contours for overlapped and touching nuclei. In this study, We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images. The proposed network uses normalized nucleus distance map rather than the binary mask to encode nuclei contour information. The proposed sharpness loss enhances the contrast of nuclei contour pixels. The proposed method is evaluated using four image quality metrics and segmentation results on two public datasets. Both quantitative and qualitative results demonstrate that the proposed approach can generate realistic histopathology images with clear nuclei contours.
Abstract:Recent research on the application of remote sensing and deep learning-based analysis in precision agriculture demonstrated a potential for improved crop management and reduced environmental impacts of agricultural production. Despite the promising results, the practical relevance of these technologies for actual field deployment requires novel algorithms that are customized for analysis of agricultural images and robust to implementation on natural field imagery. The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks. The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level. Specifically, we examine premature plant senescence resulting in drought stress on Russet Burbank potato plants. The proposed deep learning model, named Retina-UNet-Ag, is a variant of Retina-UNet (Jaeger et al., 2018) and includes connections from low-level semantic dense representation maps to the feature pyramid network. The paper also introduces a dataset of field images acquired with a Parrot Sequoia camera carried by a Solo unmanned aerial vehicle. Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice score coefficient of 0.74. A comparison to related state-of-the-art deep learning models for object detection revealed that the presented approach is effective for the task at hand. The method applied here is conducive toward the assessment and recognition of potato crop stress (early plant senescence resulting from drought stress in this case) in natural aerial field images collected under real conditions.