Abstract:Knowledge Organization (KO) and Knowledge Representation (KR) have been the two mainstream methodologies of knowledge modelling in the Information Science community and the Artificial Intelligence community, respectively. The facet-analytical tradition of KO has developed an exhaustive set of guiding canons for ensuring quality in organising and managing knowledge but has remained limited in terms of technology-driven activities to expand its scope and services beyond the bibliographic universe of knowledge. KR, on the other hand, boasts of a robust ecosystem of technologies and technology-driven service design which can be tailored to model any entity or scale to any service in the entire universe of knowledge. This paper elucidates both the facet-analytical KO and KR methodologies in detail and provides a functional mapping between them. Out of the mapping, the paper proposes an integrated KR-enriched KO methodology with all the standard components of a KO methodology plus the advanced technologies provided by the KR approach. The practical benefits of the methodological integration has been exemplified through the flagship application of the Digital University at the University of Trento, Italy.
Abstract:The purpose of this work is to find out how different library classification systems and linguistic ontologies arrange a particular domain of interest and what are the limitations for information retrieval. We use knowledge representation techniques and languages for construction of a domain specific ontology. This ontology would help not only in problem solving, but it would demonstrate the ease with which complex queries can be handled using principles of domain ontology, thereby facilitating better information retrieval.
Abstract:In this paper, we introduce and illustrate the novel phenomenon of Conceptual Entanglement which emerges due to the representational manifoldness immanent while incrementally modelling domain ontologies step-by-step across the following five levels: perception, labelling, semantic alignment, hierarchical modelling and intensional definition. In turn, we propose Conceptual Disentanglement, a multi-level conceptual modelling strategy which enforces and explicates, via guiding principles, semantic bijections with respect to each level of conceptual entanglement (across all the above five levels) paving the way for engineering conceptually disentangled domain ontologies. We also briefly argue why state-of-the-art ontology development methodologies and approaches are insufficient with respect to our characterization.