Abstract:Extensive evaluation of perception systems is crucial for ensuring the safety of intelligent vehicles in complex driving scenarios. Conventional performance metrics such as precision, recall and the F1-score assess the overall detection accuracy, but they do not consider the safety-relevant aspects of perception. Consequently, perception systems that achieve high scores in these metrics may still cause misdetections that could lead to severe accidents. Therefore, it is important to evaluate not only the overall performance of perception systems, but also their safety. We therefore introduce a novel safety metric for jointly evaluating the most critical perception tasks, object and lane detection. Our proposed framework integrates a new, lightweight object safety metric that quantifies the potential risk associated with object detection errors, as well as an lane safety metric including the interdependence between both tasks that can occur in safety evaluation. The resulting combined safety score provides a unified, interpretable measure of perception safety performance. Using the DeepAccident dataset, we demonstrate that our approach identifies safety critical perception errors that conventional performance metrics fail to capture. Our findings emphasize the importance of safety-centric evaluation methods for perception systems in autonomous driving.
Abstract:Ensuring safety is the primary objective of automated driving, which necessitates a comprehensive and accurate perception of the environment. While numerous performance evaluation metrics exist for assessing perception capabilities, incorporating safety-specific metrics is essential to reliably evaluate object detection systems. A key component for safety evaluation is the ability to distinguish between relevant and non-relevant objects - a challenge addressed by criticality or relevance metrics. This paper presents the first in-depth analysis of criticality metrics for safety evaluation of object detection systems. Through a comprehensive review of existing literature, we identify and assess a range of applicable metrics. Their effectiveness is empirically validated using the DeepAccident dataset, which features a variety of safety-critical scenarios. To enhance evaluation accuracy, we propose two novel application strategies: bidirectional criticality rating and multi-metric aggregation. Our approach demonstrates up to a 100% improvement in terms of criticality classification accuracy, highlighting its potential to significantly advance the safety evaluation of object detection systems in automated vehicles.
Abstract:Collective perception has received considerable attention as a promising approach to overcome occlusions and limited sensing ranges of vehicle-local perception in autonomous driving. In order to develop and test novel collective perception technologies, appropriate datasets are required. These datasets must include not only different environmental conditions, as they strongly influence the perception capabilities, but also a wide range of scenarios with different road users as well as realistic sensor models. Therefore, we propose the Synthetic COllective PErception (SCOPE) dataset. SCOPE is the first synthetic multi-modal dataset that incorporates realistic camera and LiDAR models as well as parameterized and physically accurate weather simulations for both sensor types. The dataset contains 17,600 frames from over 40 diverse scenarios with up to 24 collaborative agents, infrastructure sensors, and passive traffic, including cyclists and pedestrians. In addition, recordings from two novel digital-twin maps from Karlsruhe and T\"ubingen are included. The dataset is available at https://ekut-es.github.io/scope
Abstract:Comprehensive perception of the vehicle's environment and correct interpretation of the environment are crucial for the safe operation of autonomous vehicles. The perception of surrounding objects is the main component for further tasks such as trajectory planning. However, safe trajectory planning requires not only object detection, but also the detection of drivable areas and lane corridors. While first approaches consider an advanced safety evaluation of object detection, the evaluation of lane detection still lacks sufficient safety metrics. Similar to the safety metrics for object detection, additional factors such as the semantics of the scene with road type and road width, the detection range as well as the potential causes of missing detections, incorporated by vehicle speed, should be considered for the evaluation of lane detection. Therefore, we propose the Lane Safety Metric (LSM), which takes these factors into account and allows to evaluate the safety of lane detection systems by determining an easily interpretable safety score. We evaluate our offline safety metric on various virtual scenarios using different lane detection approaches and compare it with state-of-the-art performance metrics.