Abstract:Collective perception has received considerable attention as a promising approach to overcome occlusions and limited sensing ranges of vehicle-local perception in autonomous driving. In order to develop and test novel collective perception technologies, appropriate datasets are required. These datasets must include not only different environmental conditions, as they strongly influence the perception capabilities, but also a wide range of scenarios with different road users as well as realistic sensor models. Therefore, we propose the Synthetic COllective PErception (SCOPE) dataset. SCOPE is the first synthetic multi-modal dataset that incorporates realistic camera and LiDAR models as well as parameterized and physically accurate weather simulations for both sensor types. The dataset contains 17,600 frames from over 40 diverse scenarios with up to 24 collaborative agents, infrastructure sensors, and passive traffic, including cyclists and pedestrians. In addition, recordings from two novel digital-twin maps from Karlsruhe and T\"ubingen are included. The dataset is available at https://ekut-es.github.io/scope
Abstract:Comprehensive perception of the vehicle's environment and correct interpretation of the environment are crucial for the safe operation of autonomous vehicles. The perception of surrounding objects is the main component for further tasks such as trajectory planning. However, safe trajectory planning requires not only object detection, but also the detection of drivable areas and lane corridors. While first approaches consider an advanced safety evaluation of object detection, the evaluation of lane detection still lacks sufficient safety metrics. Similar to the safety metrics for object detection, additional factors such as the semantics of the scene with road type and road width, the detection range as well as the potential causes of missing detections, incorporated by vehicle speed, should be considered for the evaluation of lane detection. Therefore, we propose the Lane Safety Metric (LSM), which takes these factors into account and allows to evaluate the safety of lane detection systems by determining an easily interpretable safety score. We evaluate our offline safety metric on various virtual scenarios using different lane detection approaches and compare it with state-of-the-art performance metrics.