Abstract:Collective perception has received considerable attention as a promising approach to overcome occlusions and limited sensing ranges of vehicle-local perception in autonomous driving. In order to develop and test novel collective perception technologies, appropriate datasets are required. These datasets must include not only different environmental conditions, as they strongly influence the perception capabilities, but also a wide range of scenarios with different road users as well as realistic sensor models. Therefore, we propose the Synthetic COllective PErception (SCOPE) dataset. SCOPE is the first synthetic multi-modal dataset that incorporates realistic camera and LiDAR models as well as parameterized and physically accurate weather simulations for both sensor types. The dataset contains 17,600 frames from over 40 diverse scenarios with up to 24 collaborative agents, infrastructure sensors, and passive traffic, including cyclists and pedestrians. In addition, recordings from two novel digital-twin maps from Karlsruhe and T\"ubingen are included. The dataset is available at https://ekut-es.github.io/scope
Abstract:To ensure safe operation of autonomous vehicles in complex urban environments, complete perception of the environment is necessary. However, due to environmental conditions, sensor limitations, and occlusions, this is not always possible from a single point of view. To address this issue, collective perception is an effective method. Realistic and large-scale datasets are essential for training and evaluating collective perception methods. This paper provides the first comprehensive technical review of collective perception datasets in the context of autonomous driving. The survey analyzes existing V2V and V2X datasets, categorizing them based on different criteria such as sensor modalities, environmental conditions, and scenario variety. The focus is on their applicability for the development of connected automated vehicles. This study aims to identify the key criteria of all datasets and to present their strengths, weaknesses, and anomalies. Finally, this survey concludes by making recommendations regarding which dataset is most suitable for collective 3D object detection, tracking, and semantic segmentation.