Abstract:The cyber-physical convergence is opening up new business opportunities for industrial operators. The need for deep integration of the cyber and the physical worlds establishes a rich business agenda towards consolidating new system and network engineering approaches. This revolution would not be possible without the rich and heterogeneous sources of data, as well as the ability of their intelligent exploitation, mainly due to the fact that data will serve as a fundamental resource to promote Industry 4.0. One of the most fruitful research and practice areas emerging from this data-rich, cyber-physical, smart factory environment is the data-driven process monitoring field, which applies machine learning methodologies to enable predictive maintenance applications. In this paper, we examine popular time series forecasting techniques as well as supervised machine learning algorithms in the applied context of Industry 4.0, by transforming and preprocessing the historical industrial dataset of a packing machine's operational state recordings (real data coming from the production line of a manufacturing plant from the food and beverage domain). In our methodology, we use only a single signal concerning the machine's operational status to make our predictions, without considering other operational variables or fault and warning signals, hence its characterization as ``agnostic''. In this respect, the results demonstrate that the adopted methods achieve a quite promising performance on three targeted use cases.
Abstract:Nowadays, more and more datasets are published towards research and development of systems and models, enabling direct comparisons, continuous improvement of solutions, and researchers engagement with experimental, real life data. However, especially in the Structural Health Monitoring (SHM) domain, there are plenty of cases where new research projects have a unique combination of structure design and implementation, sensor selection and technological enablers that does not fit with the configuration of relevant individual studies in the literature. Thus, we share the data from our case study to the research community as we did not find any relevant repository available. More specifically, in this paper, we present a novel time-series dataset for impact detection and localization on a plastic thin-plate, towards Structural Health Monitoring applications, using ceramic piezoelectric transducers (PZTs) connected to an Internet of Things (IoT) device. The dataset was collected from an experimental procedure of low-velocity, low-energy impact events that includes at least 3 repetitions for each unique experiment, while the input measurements come from 4 PZT sensors placed at the corners of the plate. For each repetition and sensor, 5000 values are stored with 100 KHz sampling rate. The system is excited with a steel ball, and the height from which it is released varies from 10 cm to 20 cm. The dataset is available in GitHub (https://github.com/Smart-Objects/Impact-Events-Dataset).