Abstract:In this research work, we address the problem of robust iris centre localisation in unconstrained conditions as a core component of our eye-gaze tracking platform. We investigate the application of U-Net variants for segmentation-based and regression-based approaches to improve our iris centre localisation, which was previously based on Bayes' classification. The achieved results are comparable to or better than the state-of-the-art, offering a drastic improvement over those achieved by the Bayes' classifier, and without sacrificing the real-time performance of our eye-gaze tracking platform.
Abstract:The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted.