Abstract:We investigated the ability of deep learning models for imaging based HPV status detection. To overcome the problem of small medical datasets we used a transfer learning approach. A 3D convolutional network pre-trained on sports video clips was fine tuned such that full 3D information in the CT images could be exploited. The video pre-trained model was able to differentiate HPV-positive from HPV-negative cases with an area under the receiver operating characteristic curve (AUC) of 0.81 for an external test set. In comparison to a 3D convolutional neural network (CNN) trained from scratch and a 2D architecture pre-trained on ImageNet the video pre-trained model performed best.
Abstract:Computational design optimization in fluid dynamics usually requires to solve non-linear partial differential equations numerically. In this work, we explore a Bayesian optimization approach to minimize an object's drag coefficient in laminar flow based on predicting drag directly from the object shape. Jointly training an architecture combining a variational autoencoder mapping shapes to latent representations and Gaussian process regression allows us to generate improved shapes in the two dimensional case we consider.