Abstract:Hallucination has been a popular topic in natural language generation (NLG). In real-world applications, unfaithful content can result in bad data quality or loss of trust from end users. Thus, it is crucial to fact-check before adopting NLG for production usage, which can be expensive if done manually. In this paper, we investigate automated faithfulness evaluation in guided NLG. We developed a rubrics template and use large language models (LLMs) to score the generation into quantifiable scales. We compared popular LLMs as well as the widely adopted natural language inference (NLI) models in scoring quality and sensitivity. In addition, we developed methods to generation synthetic unfaithful data, as well as a heuristics to quantify the percentage of hallucination. Our results on 4 travel-domain industry dataset show that GPT-4 can provide accurate judgement and explanation on whether a source and a generation are factually consistent. Furthermore, we found that tuning NLI models on synthetic data can improve performance. Lastly, we present insights on latency and cost for deploying such system.