Abstract:The output of Large Language Models (LLMs) are a function of the internal model's parameters and the input provided into the context window. The hypothesis presented here is that under a greedy sampling strategy the variance in the LLM's output is a function of the conceptual certainty embedded in the model's parametric knowledge, as well as the lexical variance in the input. Finetuning the model results in reducing the sensitivity of the model output to the lexical input variations. This is then applied to a classification problem and a probabilistic method is proposed for estimating the certainties of the predicted classes.
Abstract:In this work, we seek to finetune a weakly-supervised expert-guided Deep Neural Network (DNN) for the purpose of determining political affiliations. In this context, stance detection is used for determining political affiliation or ideology which is framed in the form of relative proximities between entities in a low-dimensional space. An attention-based mechanism is used to provide model interpretability. A Deep Neural Network for Natural Language Understanding (NLU) using static and contextual embeddings is trained and evaluated. Various techniques to visualize the projections generated from the network are evaluated for visualization efficiency. An overview of the pipeline from data ingestion, processing and generation of visualization is given here. A web-based framework created to faciliate this interaction and exploration is presented here. Preliminary results of this study are summarized and future work is outlined.