Abstract:Machine learning (ML) is emerging as a transformative tool for the design of architected materials, offering properties that far surpass those achievable through lab-based trial-and-error methods. However, a major challenge in current inverse design strategies is their reliance on extensive computational and/or experimental datasets, which becomes particularly problematic for designing micro-scale stochastic architected materials that exhibit nonlinear mechanical behaviors. Here, we introduce a new end-to-end scientific ML framework, leveraging deep neural operators (DeepONet), to directly learn the relationship between the complete microstructure and mechanical response of architected metamaterials from sparse but high-quality in situ experimental data. The approach facilitates the inverse design of structures tailored to specific nonlinear mechanical behaviors. Results obtained from spinodal microstructures, printed using two-photon lithography, reveal that the prediction error for mechanical responses is within a range of 5 - 10%. Our work underscores that by employing neural operators with advanced micro-mechanics experimental techniques, the design of complex micro-architected materials with desired properties becomes feasible, even in scenarios constrained by data scarcity. Our work marks a significant advancement in the field of materials-by-design, potentially heralding a new era in the discovery and development of next-generation metamaterials with unparalleled mechanical characteristics derived directly from experimental insights.