Abstract:Large Vision-Language Models (VLMs) have achieved unprecedented success in several objective multimodal reasoning tasks. However, to further enhance their capabilities of empathetic and effective communication with humans, improving how VLMs process and understand emotions is crucial. Despite significant research attention on improving affective understanding, there is a lack of detailed evaluations of VLMs for emotion-related tasks, which can potentially help inform downstream fine-tuning efforts. In this work, we present the first comprehensive evaluation of VLMs for recognizing evoked emotions from images. We create a benchmark for the task of evoked emotion recognition and study the performance of VLMs for this task, from perspectives of correctness and robustness. Through several experiments, we demonstrate important factors that emotion recognition performance depends on, and also characterize the various errors made by VLMs in the process. Finally, we pinpoint potential causes for errors through a human evaluation study. We use our experimental results to inform recommendations for the future of emotion research in the context of VLMs.
Abstract:The rapid expansion of social media platforms has provided unprecedented access to massive amounts of multimodal user-generated content. Comprehending user emotions can provide valuable insights for improving communication and understanding of human behaviors. Despite significant advancements in Affective Computing, the diverse factors influencing user emotions in social networks remain relatively understudied. Moreover, there is a notable lack of deep learning-based methods for predicting user emotions in social networks, which could be addressed by leveraging the extensive multimodal data available. This work presents a novel formulation of personalized emotion prediction in social networks based on heterogeneous graph learning. Building upon this formulation, we design HMG-Emo, a Heterogeneous Multimodal Graph Learning Framework that utilizes deep learning-based features for user emotion recognition. Additionally, we include a dynamic context fusion module in HMG-Emo that is capable of adaptively integrating the different modalities in social media data. Through extensive experiments, we demonstrate the effectiveness of HMG-Emo and verify the superiority of adopting a graph neural network-based approach, which outperforms existing baselines that use rich hand-crafted features. To the best of our knowledge, HMG-Emo is the first multimodal and deep-learning-based approach to predict personalized emotions within online social networks. Our work highlights the significance of exploiting advanced deep learning techniques for less-explored problems in Affective Computing.
Abstract:The exponential growth in scale and relevance of social networks enable them to provide expansive insights. Predicting missing links in social networks efficiently can help in various modern-day business applications ranging from generating recommendations to influence analysis. Several categories of solutions exist for the same. Here, we explore various feature extraction techniques to generate representations of nodes and edges in a social network that allow us to predict missing links. We compare the results of using ten feature extraction techniques categorized across Structural embeddings, Neighborhood-based embeddings, Graph Neural Networks, and Graph Heuristics, followed by modeling with ensemble classifiers and custom Neural Networks. Further, we propose combining heuristic-based features and learned representations that demonstrate improved performance for the link prediction task on social network datasets. Using this method to generate accurate recommendations for many applications is a matter of further study that appears very promising. The code for all the experiments has been made public.