Abstract:Precise weed management is essential for sustaining crop productivity and ecological balance. Traditional herbicide applications face economic and environmental challenges, emphasizing the need for intelligent weed control systems powered by deep learning. These systems require vast amounts of high-quality training data. The reality of scarcity of well-annotated training data, however, is often addressed through generating more data using data augmentation. Nevertheless, conventional augmentation techniques such as random flipping, color changes, and blurring lack sufficient fidelity and diversity. This paper investigates a generative AI-based augmentation technique that uses the Stable Diffusion model to produce diverse synthetic images that improve the quantity and quality of training datasets for weed detection models. Moreover, this paper explores the impact of these synthetic images on the performance of real-time detection systems, thus focusing on compact CNN-based models such as YOLO nano for edge devices. The experimental results show substantial improvements in mean Average Precision (mAP50 and mAP50-95) scores for YOLO models trained with generative AI-augmented datasets, demonstrating the promising potential of synthetic data to enhance model robustness and accuracy.
Abstract:In automated crop protection tasks such as weed control, disease diagnosis, and pest monitoring, deep learning has demonstrated significant potential. However, these advanced models rely heavily on high-quality, diverse datasets, often limited and costly in agricultural settings. Traditional data augmentation can increase dataset volume but usually lacks the real-world variability needed for robust training. This study presents a new approach for generating synthetic images to improve deep learning-based object detection models for intelligent weed control. Our GenAI-based image generation pipeline integrates the Segment Anything Model (SAM) for zero-shot domain adaptation with a text-to-image Stable Diffusion Model, enabling the creation of synthetic images that capture diverse real-world conditions. We evaluate these synthetic datasets using lightweight YOLO models, measuring data efficiency with mAP50 and mAP50-95 scores across varying proportions of real and synthetic data. Notably, YOLO models trained on datasets with 10% synthetic and 90% real images generally demonstrate superior mAP50 and mAP50-95 scores compared to those trained solely on real images. This approach not only reduces dependence on extensive real-world datasets but also enhances predictive performance. The integration of this approach opens opportunities for achieving continual self-improvement of perception modules in intelligent technical systems.