Deep learning-based weed control systems often suffer from limited training data diversity and constrained on-board computation, impacting their real-world performance. To overcome these challenges, we propose a framework that leverages Stable Diffusion-based inpainting to augment training data progressively in 10% increments -- up to an additional 200%, thus enhancing both the volume and diversity of samples. Our approach is evaluated on two state-of-the-art object detection models, YOLO11(l) and RT-DETR(l), using the mAP50 metric to assess detection performance. We explore quantization strategies (FP16 and INT8) for both the generative inpainting and detection models to strike a balance between inference speed and accuracy. Deployment of the downstream models on the Jetson Orin Nano demonstrates the practical viability of our framework in resource-constrained environments, ultimately improving detection accuracy and computational efficiency in intelligent weed management systems.