Abstract:Community question-answering (CQA) platforms have become very popular forums for asking and answering questions daily. While these forums are rich repositories of community knowledge, they present challenges for finding relevant answers and similar questions, due to the open-ended nature of informal discussions. Further, if the platform allows questions and answers in multiple languages, we are faced with the additional challenge of matching cross-lingual information. In this work, we focus on the cross-language question re-ranking shared task, which aims to find existing questions that may be written in different languages. Our contribution is an exploration of query expansion techniques for this problem. We investigate expansions based on Word Embeddings, DBpedia concepts linking, and Hypernym, and show that they outperform existing state-of-the-art methods.
Abstract:Data privacy is an important issue for "machine learning as a service" providers. We focus on the problem of membership inference attacks: given a data sample and black-box access to a model's API, determine whether the sample existed in the model's training data. Our contribution is an investigation of this problem in the context of sequence-to-sequence models, which are important in applications such as machine translation and video captioning. We define the membership inference problem for sequence generation, provide an open dataset based on state-of-the-art machine translation models, and report initial results on whether these models leak private information against several kinds of membership inference attacks.