Abstract:Machine learning models are increasingly used in critical areas such as loan approvals and hiring, yet they often function as black boxes, obscuring their decision-making processes. Transparency is crucial, as individuals need explanations to understand decisions, primarily if the decisions result in an undesired outcome. Our work introduces CoGS (Counterfactual Generation with s(CASP)), a model-agnostic framework capable of generating counterfactual explanations for classification models. CoGS leverages the goal-directed Answer Set Programming system s(CASP) to compute realistic and causally consistent modifications to feature values, accounting for causal dependencies between them. By using rule-based machine learning algorithms (RBML), notably the FOLD-SE algorithm, CoGS extracts the underlying logic of a statistical model to generate counterfactual solutions. By tracing a step-by-step path from an undesired outcome to a desired one, CoGS offers interpretable and actionable explanations of the changes required to achieve the desired outcome. We present details of the CoGS framework along with its evaluation.
Abstract:Machine learning models are increasingly used in areas such as loan approvals and hiring, yet they often function as black boxes, obscuring their decision-making processes. Transparency is crucial, and individuals need explanations to understand decisions, especially for the ones not desired by the user. Ethical and legal considerations require informing individuals of changes in input attribute values (features) that could lead to a desired outcome for the user. Our work aims to generate counterfactual explanations by considering causal dependencies between features. We present the CoGS (Counterfactual Generation with s(CASP)) framework that utilizes the goal-directed Answer Set Programming system s(CASP) to generate counterfactuals from rule-based machine learning models, specifically the FOLD-SE algorithm. CoGS computes realistic and causally consistent changes to attribute values taking causal dependencies between them into account. It finds a path from an undesired outcome to a desired one using counterfactuals. We present details of the CoGS framework along with its evaluation.
Abstract:Machine learning models that automate decision-making are increasingly used in consequential areas such as loan approvals, pretrial bail approval, and hiring. Unfortunately, most of these models are black boxes, i.e., they are unable to reveal how they reach these prediction decisions. A need for transparency demands justification for such predictions. An affected individual might also desire explanations to understand why a decision was made. Ethical and legal considerations require informing the individual of changes in the input attribute (s) that could be made to produce a desirable outcome. Our work focuses on the latter problem of generating counterfactual explanations by considering the causal dependencies between features. In this paper, we present the framework CFGs, CounterFactual Generation with s(CASP), which utilizes the goal-directed Answer Set Programming (ASP) system s(CASP) to automatically generate counterfactual explanations from models generated by rule-based machine learning algorithms in particular. We benchmark CFGs with the FOLD-SE model. Reaching the counterfactual state from the initial state is planned and achieved using a series of interventions. To validate our proposal, we show how counterfactual explanations are computed and justified by imagining worlds where some or all factual assumptions are altered/changed. More importantly, we show how CFGs navigates between these worlds, namely, go from our initial state where we obtain an undesired outcome to the imagined goal state where we obtain the desired decision, taking into account the causal relationships among features.
Abstract:Machine learning models that automate decision-making are increasingly being used in consequential areas such as loan approvals, pretrial bail approval, hiring, and many more. Unfortunately, most of these models are black-boxes, i.e., they are unable to reveal how they reach these prediction decisions. A need for transparency demands justification for such predictions. An affected individual might also desire explanations to understand why a decision was made. Ethical and legal considerations may further require informing the individual of changes in the input attribute that could be made to produce a desirable outcome. This paper focuses on the latter problem of automatically generating counterfactual explanations. We propose a framework Counterfactual Generation with s(CASP) (CFGS) that utilizes answer set programming (ASP) and the s(CASP) goal-directed ASP system to automatically generate counterfactual explanations from rules generated by rule-based machine learning (RBML) algorithms. In our framework, we show how counterfactual explanations are computed and justified by imagining worlds where some or all factual assumptions are altered/changed. More importantly, we show how we can navigate between these worlds, namely, go from our original world/scenario where we obtain an undesired outcome to the imagined world/scenario where we obtain a desired/favourable outcome.
Abstract:Machines are being increasingly used in decision-making processes, resulting in the realization that decisions need explanations. Unfortunately, an increasing number of these deployed models are of a 'black-box' nature where the reasoning behind the decisions is unknown. Hence, there is a need for clarity behind the reasoning of these decisions. As humans, we would want these decisions to be presented to us in an explainable manner. However, explanations alone are insufficient. They do not necessarily tell us how to achieve an outcome but merely tell us what achieves the given outcome. For this reason, my research focuses on explainability/interpretability and how it extends to counterfactual thinking.
Abstract:Machine learning models that automate decision-making are increasingly being used in consequential areas such as loan approvals, pretrial bail, hiring, and many more. Unfortunately, most of these models are black-boxes, i.e., they are unable to reveal how they reach these prediction decisions. A need for transparency demands justification for such predictions. An affected individual might desire explanations to understand why a decision was made. Ethical and legal considerations may further require informing the individual of changes in the input attribute that could be made to produce a desirable outcome. This paper focuses on the latter problem of automatically generating counterfactual explanations. Our approach utilizes answer set programming and the s(CASP) goal-directed ASP system. Answer Set Programming (ASP) is a well-known knowledge representation and reasoning paradigm. s(CASP) is a goal-directed ASP system that executes answer-set programs top-down without grounding them. The query-driven nature of s(CASP) allows us to provide justifications as proof trees, which makes it possible to analyze the generated counterfactual explanations. We show how counterfactual explanations are computed and justified by imagining multiple possible worlds where some or all factual assumptions are untrue and, more importantly, how we can navigate between these worlds. We also show how our algorithm can be used to find the Craig Interpolant for a class of answer set programs for a failing query.