Abstract:Apple orchards require timely disease detection, fruit quality assessment, and yield estimation, yet existing UAV-based systems address such tasks in isolation and often rely on costly multispectral sensors. This paper presents a unified, low-cost RGB-only UAV-based orchard intelligent pipeline integrating ResNet50 for leaf disease detection, VGG 16 for apple freshness determination, and YOLOv8 for real-time apple detection and localization. The system runs on an ESP32-CAM and Raspberry Pi, providing fully offline on-site inference without cloud support. Experiments demonstrate 98.9% accuracy for leaf disease classification, 97.4% accuracy for freshness classification, and 0.857 F1 score for apple detection. The framework provides an accessible and scalable alternative to multispectral UAV solutions, supporting practical precision agriculture on affordable hardware.




Abstract:Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment for automatically identifying each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.