Abstract:As minimally verbal autistic (MVA) children communicate with parents through few words and nonverbal cues, parents often struggle to encourage their children to express subtle emotions and needs and to grasp their nuanced signals. We present AACessTalk, a tablet-based, AI-mediated communication system that facilitates meaningful exchanges between an MVA child and a parent. AACessTalk provides real-time guides to the parent to engage the child in conversation and, in turn, recommends contextual vocabulary cards to the child. Through a two-week deployment study with 11 MVA child-parent dyads, we examine how AACessTalk fosters everyday conversation practice and mutual engagement. Our findings show high engagement from all dyads, leading to increased frequency of conversation and turn-taking. AACessTalk also encouraged parents to explore their own interaction strategies and empowered the children to have more agency in communication. We discuss the implications of designing technologies for balanced communication dynamics in parent-MVA child interaction.
Abstract:Expressing stressful experiences in words is proven to improve mental and physical health, but individuals often disengage with writing interventions as they struggle to organize their thoughts and emotions. Reflective prompts have been used to provide direction, and large language models (LLMs) have demonstrated the potential to provide tailored guidance. Current systems often limit users' flexibility to direct their reflections. We thus present ExploreSelf, an LLM-driven application designed to empower users to control their reflective journey. ExploreSelf allows users to receive adaptive support through dynamically generated questions. Through an exploratory study with 19 participants, we examine how participants explore and reflect on personal challenges using ExploreSelf. Our findings demonstrate that participants valued the balance between guided support and freedom to control their reflective journey, leading to deeper engagement and insight. Building on our findings, we discuss implications for designing LLM-driven tools that promote user empowerment through effective reflective practices.
Abstract:Recent large language models (LLMs) offer the potential to support public health monitoring by facilitating health disclosure through open-ended conversations but rarely preserve the knowledge gained about individuals across repeated interactions. Augmenting LLMs with long-term memory (LTM) presents an opportunity to improve engagement and self-disclosure, but we lack an understanding of how LTM impacts people's interaction with LLM-driven chatbots in public health interventions. We examine the case of CareCall -- an LLM-driven voice chatbot with LTM -- through the analysis of 1,252 call logs and interviews with nine users. We found that LTM enhanced health disclosure and fostered positive perceptions of the chatbot by offering familiarity. However, we also observed challenges in promoting self-disclosure through LTM, particularly around addressing chronic health conditions and privacy concerns. We discuss considerations for LTM integration in LLM-driven chatbots for public health monitoring, including carefully deciding what topics need to be remembered in light of public health goals.