Abstract:Time Series Forecasting is at the core of many practical applications such as sales forecasting for business, rainfall forecasting for agriculture and many others. Though this problem has been extensively studied for years, it is still considered a challenging problem due to complex and evolving nature of time series data. Typical methods proposed for time series forecasting modeled linear or non-linear dependencies between data observations. However it is a generally accepted notion that no one method is universally effective for all kinds of time series data. Attempts have been made to use dynamic and weighted combination of heterogeneous and independent forecasting models and it has been found to be a promising direction to tackle this problem. This method is based on the assumption that different forecasters have different specialization and varying performance for different distribution of data and weights are dynamically assigned to multiple forecasters accordingly. However in many practical time series data-set, the distribution of data slowly evolves with time. We propose to employ a re-weighting based method to adjust the assigned weights to various forecasters in order to account for such distribution-drift. An exhaustive testing was performed against both real-world and synthesized time-series. Experimental results show the competitiveness of the method in comparison to state-of-the-art approaches for combining forecasters and handling drift.