Abstract:Building correspondences across different modalities, such as video and language, has recently become critical in many visual recognition applications, such as video captioning. Inspired by machine translation, recent models tackle this task using an encoder-decoder strategy. The (video) encoder is traditionally a Convolutional Neural Network (CNN), while the decoding (for language generation) is done using a Recurrent Neural Network (RNN). Current state-of-the-art methods, however, train encoder and decoder separately. CNNs are pretrained on object and/or action recognition tasks and used to encode video-level features. The decoder is then optimised on such static features to generate the video's description. This disjoint setup is arguably sub-optimal for input (video) to output (description) mapping. In this work, we propose to optimise both encoder and decoder simultaneously in an end-to-end fashion. In a two-stage training setting, we first initialise our architecture using pre-trained encoders and decoders -- then, the entire network is trained end-to-end in a fine-tuning stage to learn the most relevant features for video caption generation. In our experiments, we use GoogLeNet and Inception-ResNet-v2 as encoders and an original Soft-Attention (SA-) LSTM as a decoder. Analogously to gains observed in other computer vision problems, we show that end-to-end training significantly improves over the traditional, disjoint training process. We evaluate our End-to-End (EtENet) Networks on the Microsoft Research Video Description (MSVD) and the MSR Video to Text (MSR-VTT) benchmark datasets, showing how EtENet achieves state-of-the-art performance across the board.
Abstract:One of the key points in music recommendation is authoring engaging playlists according to sentiment and emotions. While previous works were mostly based on audio for music discovery and playlists generation, we take advantage of our synchronized lyrics dataset to combine text representations and music features in a novel way; we therefore introduce the Synchronized Lyrics Emotion Dataset. Unlike other approaches that randomly exploited the audio samples and the whole text, our data is split according to the temporal information provided by the synchronization between lyrics and audio. This work shows a comparison between text-based and audio-based deep learning classification models using different techniques from Natural Language Processing and Music Information Retrieval domains. From the experiments on audio we conclude that using vocals only, instead of the whole audio data improves the overall performances of the audio classifier. In the lyrics experiments we exploit the state-of-the-art word representations applied to the main Deep Learning architectures available in literature. In our benchmarks the results show how the Bilinear LSTM classifier with Attention based on fastText word embedding performs better than the CNN applied on audio.