Abstract:Cement is the most used construction material. The performance of cement hydrate depends on the constituent phases, viz. alite, belite, aluminate, and ferrites present in the cement clinker, both qualitatively and quantitatively. Traditionally, clinker phases are analyzed from optical images relying on a domain expert and simple image processing techniques. However, the non-uniformity of the images, variations in the geometry and size of the phases, and variabilities in the experimental approaches and imaging methods make it challenging to obtain the phases. Here, we present a machine learning (ML) approach to detect clinker microstructure phases automatically. To this extent, we create the first annotated dataset of cement clinker by segmenting alite and belite particles. Further, we use supervised ML methods to train models for identifying alite and belite regions. Specifically, we finetune the image detection and segmentation model Detectron-2 on the cement microstructure to develop a model for detecting the cement phases, namely, Cementron. We demonstrate that Cementron, trained only on literature data, works remarkably well on new images obtained from our experiments, demonstrating its generalizability. We make Cementron available for public use.
Abstract:A MIDI based approach for music recognition is proposed and implemented in this paper. Our Clarinet music retrieval system is designed to search piano MIDI files with high recall and speed. We design a novel melody extraction algorithm that improves recall results by more than 10%. We also implement 3 algorithms for retrieval-two self designed (RSA Note and RSA Time), and a modified version of the Mongeau Sankoff Algorithm. Algorithms to achieve tempo and scale invariance are also discussed in this paper. The paper also contains detailed experimentation and benchmarks with four different metrics. Clarinet achieves recall scores of more than 94%.