Abstract:The shortage of clinical workforce presents significant challenges in mental healthcare, limiting access to formal diagnostics and services. We aim to tackle this shortage by integrating a customized large language model (LLM) into the workflow, thus promoting equity in mental healthcare for the general population. Although LLMs have showcased their capability in clinical decision-making, their adaptation to severe conditions like Post-traumatic Stress Disorder (PTSD) remains largely unexplored. Therefore, we collect 411 clinician-administered diagnostic interviews and devise a novel approach to obtain high-quality data. Moreover, we build a comprehensive framework to automate PTSD diagnostic assessments based on interview contents by leveraging two state-of-the-art LLMs, GPT-4 and Llama-2, with potential for broader clinical diagnoses. Our results illustrate strong promise for LLMs, tested on our dataset, to aid clinicians in diagnostic validation. To the best of our knowledge, this is the first AI system that fully automates assessments for mental illness based on clinician-administered interviews.
Abstract:Entity recognition provides semantic access to ancient materials in the Digital Humanities: itexposes people and places of interest in texts that cannot be read exhaustively, facilitates linkingresources and can provide a window into text contents, even for texts with no translations. Inthis paper we present entity recognition for Coptic, the language of Hellenistic era Egypt. Weevaluate NLP approaches to the task and lay out difficulties in applying them to a low-resource,morphologically complex language. We present solutions for named and non-named nested en-tity recognition and semi-automatic entity linking to Wikipedia, relying on robust dependencyparsing, feature-based CRF models, and hand-crafted knowledge base resources, enabling highaccuracy NER with orders of magnitude less data than those used for high resource languages.The results suggest avenues for research on other languages in similar settings.