Abstract:Vehicle localization is essential for intelligent transportation. However, achieving low-latency vehicle localization without sacrificing precision is challenging. In this paper, we propose a road-aware localization mechanism in heterogeneous networks (HetNet), where distinct features of HetNet signals are extracted for two-spatial-scale position mapping, enabling low-latency positioning with high precision. Specifically, we propose a sequence segmentation method to extract the low-dimensional positioning space on two spatial scales. To represent roads and sub-segments according to HetNet signals, we propose a salient feature extraction method to eliminate redundant features and retain distinct features, thereby reducing feature-matching complexity and improving representation accuracy. Based on the extracted salient features, a two-spatial-scale localization algorithm is designed through salient feature matching, which can achieve low-latency road-aware localization. Furthermore, high-precision positioning is achieved by coordinate mapping based on curve fitting. Simulation results show that our mechanism can provide a low-latency and high-precision positioning service compared to the benchmark schemes.
Abstract:Video traffic in vehicular communication networks (VCNs) faces exponential growth. However, different segments of most videos reveal various attractiveness for viewers, and the pre-caching decision is greatly affected by the dynamic service duration that edge nodes can provide services for mobile vehicles driving along a road. In this paper, we propose an efficient video highlight pre-caching scheme in the vehicular communication network, adapting to the service duration. Specifically, a highlight entropy model is devised with the consideration of the segments' popularity and continuity between segments within a period of time, based on which, an optimization problem of video highlight pre-caching is formulated. As this problem is non-convex and lacks a closed-form expression of the objective function, we decouple multiple variables by deriving candidate highlight segmentations of videos through wavelet transform, which can significantly reduce the complexity of highlight pre-caching. Then the problem is solved iteratively by a highlight-direction trimming algorithm, which is proven to be locally optimal. Simulation results based on real-world video datasets demonstrate significant improvement in highlight entropy and jitter compared to benchmark schemes.