Abstract:In this work, we attempted to unleash the potential of self-supervised learning as an auxiliary task that can optimise the primary task of generalised deepfake detection. To explore this, we examined different combinations of the training schemes for these tasks that can be most effective. Our findings reveal that fusing the feature representation from self-supervised auxiliary tasks is a powerful feature representation for the problem at hand. Such a representation can leverage the ultimate potential and bring in a unique representation of both the self-supervised and primary tasks, achieving better performance for the primary task. We experimented on a large set of datasets, which includes DF40, FaceForensics++, Celeb-DF, DFD, FaceShifter, UADFV, and our results showed better generalizability on cross-dataset evaluation when compared with current state-of-the-art detectors.
Abstract:While Vision-Language Models (VLMs) and Multimodal Large Language Models (MLLMs) have shown strong generalisation in detecting image and video deepfakes, their use for audio deepfake detection remains largely unexplored. In this work, we aim to explore the potential of MLLMs for audio deepfake detection. Combining audio inputs with a range of text prompts as queries to find out the viability of MLLMs to learn robust representations across modalities for audio deepfake detection. Therefore, we attempt to explore text-aware and context-rich, question-answer based prompts with binary decisions. We hypothesise that such a feature-guided reasoning will help in facilitating deeper multimodal understanding and enable robust feature learning for audio deepfake detection. We evaluate the performance of two MLLMs, Qwen2-Audio-7B-Instruct and SALMONN, in two evaluation modes: (a) zero-shot and (b) fine-tuned. Our experiments demonstrate that combining audio with a multi-prompt approach could be a viable way forward for audio deepfake detection. Our experiments show that the models perform poorly without task-specific training and struggle to generalise to out-of-domain data. However, they achieve good performance on in-domain data with minimal supervision, indicating promising potential for audio deepfake detection.




Abstract:In this work, we explore Self-supervised Learning (SSL) as an auxiliary task to blend the texture-based local descriptors into feature modelling for efficient face analysis. Combining a primary task and a self-supervised auxiliary task is beneficial for robust representation. Therefore, we used the SSL task of mask auto-encoder (MAE) as an auxiliary task to reconstruct texture features such as local patterns along with the primary task for robust and unbiased face analysis. We experimented with our hypothesis on three major paradigms of face analysis: face attribute and face-based emotion analysis, and deepfake detection. Our experiment results exhibit that better feature representation can be gleaned from our proposed model for fair and bias-less face analysis.