Abstract:In recent decades, wildfires, as widespread and extremely destructive natural disasters, have caused tremendous property losses and fatalities, as well as extensive damage to forest ecosystems. Many fire risk assessment projects have been proposed to prevent wildfires, but GIS-based methods are inherently challenging to scale to different geographic areas due to variations in data collection and local conditions. Inspired by the abundance of publicly available remote sensing projects and the burgeoning development of deep learning in computer vision, our research focuses on assessing fire risk using remote sensing imagery. In this work, we propose a novel remote sensing dataset, FireRisk, consisting of 7 fire risk classes with a total of 91872 labelled images for fire risk assessment. This remote sensing dataset is labelled with the fire risk classes supplied by the Wildfire Hazard Potential (WHP) raster dataset, and remote sensing images are collected using the National Agriculture Imagery Program (NAIP), a high-resolution remote sensing imagery program. On FireRisk, we present benchmark performance for supervised and self-supervised representations, with Masked Autoencoders (MAE) pre-trained on ImageNet1k achieving the highest classification accuracy, 65.29%. This remote sensing dataset, FireRisk, provides a new direction for fire risk assessment, and we make it publicly available on https://github.com/CharmonyShen/FireRisk.
Abstract:Due to the costly nature of remote sensing image labeling and the large volume of available unlabeled imagery, self-supervised methods that can learn feature representations without manual annotation have received great attention. While prior works have explored self-supervised learning in remote sensing tasks, pretext tasks based on local-global view alignment remain underexplored. Inspired by DINO, which employs an effective representation learning structure with knowledge distillation based on global-local view alignment, we formulate two pretext tasks for use in self-supervised learning on remote sensing imagery (SSLRS). Using these tasks, we explore the effectiveness of positive temporal contrast as well as multi-sized views on SSLRS. Moreover, we extend DINO and propose DINO-MC which uses local views of various sized crops instead of a single fixed size. Our experiments demonstrate that even when pre-trained on only 10% of the dataset, DINO-MC performs on par or better than existing state of the art SSLRS methods on multiple remote sensing tasks, while using less computational resources. All codes, models and results are available at https://github.com/WennyXY/DINO-MC.