Abstract:Recent advances in Graph Neural Networks (GNNs) have revolutionized graph-structured data modeling, yet traditional GNNs struggle with complex heterogeneous structures prevalent in real-world scenarios. Despite progress in handling heterogeneous interactions, two fundamental challenges persist: noisy data significantly compromising embedding quality and learning performance, and existing methods' inability to capture intricate semantic transitions among heterogeneous relations, which impacts downstream predictions. To address these fundamental issues, we present the Heterogeneous Graph Diffusion Model (DiffGraph), a pioneering framework that introduces an innovative cross-view denoising strategy. This advanced approach transforms auxiliary heterogeneous data into target semantic spaces, enabling precise distillation of task-relevant information. At its core, DiffGraph features a sophisticated latent heterogeneous graph diffusion mechanism, implementing a novel forward and backward diffusion process for superior noise management. This methodology achieves simultaneous heterogeneous graph denoising and cross-type transition, while significantly simplifying graph generation through its latent-space diffusion capabilities. Through rigorous experimental validation on both public and industrial datasets, we demonstrate that DiffGraph consistently surpasses existing methods in link prediction and node classification tasks, establishing new benchmarks for robustness and efficiency in heterogeneous graph processing. The model implementation is publicly available at: https://github.com/HKUDS/DiffGraph.
Abstract:Customer lifetime value (LTV) prediction is essential for mobile game publishers trying to optimize the advertising investment for each user acquisition based on the estimated worth. In mobile games, deploying microtransactions is a simple yet effective monetization strategy, which attracts a tiny group of game whales who splurge on in-game purchases. The presence of such game whales may impede the practicality of existing LTV prediction models, since game whales' purchase behaviours always exhibit varied distribution from general users. Consequently, identifying game whales can open up new opportunities to improve the accuracy of LTV prediction models. However, little attention has been paid to applying game whale detection in LTV prediction, and existing works are mainly specialized for the long-term LTV prediction with the assumption that the high-quality user features are available, which is not applicable in the UA stage. In this paper, we propose ExpLTV, a novel multi-task framework to perform LTV prediction and game whale detection in a unified way. In ExpLTV, we first innovatively design a deep neural network-based game whale detector that can not only infer the intrinsic order in accordance with monetary value, but also precisely identify high spenders (i.e., game whales) and low spenders. Then, by treating the game whale detector as a gating network to decide the different mixture patterns of LTV experts assembling, we can thoroughly leverage the shared information and scenario-specific information (i.e., game whales modelling and low spenders modelling). Finally, instead of separately designing a purchase rate estimator for two tasks, we design a shared estimator that can preserve the inner task relationships. The superiority of ExpLTV is further validated via extensive experiments on three industrial datasets.