Abstract:Explanatory systems make the behavior of machine learning models more transparent, but are often inconsistent. To quantify the differences between explanatory systems, this paper presents the Shreyan Distance, a novel metric based on the weighted difference between ranked feature importance lists produced by such systems. This paper uses the Shreyan Distance to compare two explanatory systems, SHAP and LIME, for both regression and classification learning tasks. Because we find that the average Shreyan Distance varies significantly between these two tasks, we conclude that consistency between explainers not only depends on inherent properties of the explainers themselves, but also the type of learning task. This paper further contributes the XAISuite library, which integrates the Shreyan distance algorithm into machine learning pipelines.
Abstract:Explanatory systems make machine learning models more transparent. However, they are often inconsistent. In order to quantify and isolate possible scenarios leading to this discrepancy, this paper compares two explanatory systems, SHAP and LIME, based on the correlation of their respective importance scores using 14 machine learning models (7 regression and 7 classification) and 4 tabular datasets (2 regression and 2 classification). We make two novel findings. Firstly, the magnitude of importance is not significant in explanation consistency. The correlations between SHAP and LIME importance scores for the most important features may or may not be more variable than the correlation between SHAP and LIME importance scores averaged across all features. Secondly, the similarity between SHAP and LIME importance scores cannot predict model accuracy. In the process of our research, we construct an open-source library, XAISuite, that unifies the process of training and explaining models. Finally, this paper contributes a generalized framework to better explain machine learning models and optimize their performance.