Explanatory systems make machine learning models more transparent. However, they are often inconsistent. In order to quantify and isolate possible scenarios leading to this discrepancy, this paper compares two explanatory systems, SHAP and LIME, based on the correlation of their respective importance scores using 14 machine learning models (7 regression and 7 classification) and 4 tabular datasets (2 regression and 2 classification). We make two novel findings. Firstly, the magnitude of importance is not significant in explanation consistency. The correlations between SHAP and LIME importance scores for the most important features may or may not be more variable than the correlation between SHAP and LIME importance scores averaged across all features. Secondly, the similarity between SHAP and LIME importance scores cannot predict model accuracy. In the process of our research, we construct an open-source library, XAISuite, that unifies the process of training and explaining models. Finally, this paper contributes a generalized framework to better explain machine learning models and optimize their performance.