School of Automation, Beijing Information Science and Technology University
Abstract:We study the helpful product reviews identification problem in this paper. We observe that the evidence-conclusion discourse relations, also known as arguments, often appear in product reviews, and we hypothesise that some argument-based features, e.g. the percentage of argumentative sentences, the evidences-conclusions ratios, are good indicators of helpful reviews. To validate this hypothesis, we manually annotate arguments in 110 hotel reviews, and investigate the effectiveness of several combinations of argument-based features. Experiments suggest that, when being used together with the argument-based features, the state-of-the-art baseline features can enjoy a performance boost (in terms of F1) of 11.01\% in average.
Abstract:Argumentation mining aims at automatically extracting the premises-claim discourse structures in natural language texts. There is a great demand for argumentation corpora for customer reviews. However, due to the controversial nature of the argumentation annotation task, there exist very few large-scale argumentation corpora for customer reviews. In this work, we novelly use the crowdsourcing technique to collect argumentation annotations in Chinese hotel reviews. As the first Chinese argumentation dataset, our corpus includes 4814 argument component annotations and 411 argument relation annotations, and its annotations qualities are comparable to some widely used argumentation corpora in other languages.