Abstract:This paper proposes a federated learning framework designed to achieve \textit{relative fairness} for clients. Traditional federated learning frameworks typically ensure absolute fairness by guaranteeing minimum performance across all client subgroups. However, this approach overlooks disparities in model performance between subgroups. The proposed framework uses a minimax problem approach to minimize relative unfairness, extending previous methods in distributionally robust optimization (DRO). A novel fairness index, based on the ratio between large and small losses among clients, is introduced, allowing the framework to assess and improve the relative fairness of trained models. Theoretical guarantees demonstrate that the framework consistently reduces unfairness. We also develop an algorithm, named \textsc{Scaff-PD-IA}, which balances communication and computational efficiency while maintaining minimax-optimal convergence rates. Empirical evaluations on real-world datasets confirm its effectiveness in maintaining model performance while reducing disparity.
Abstract:Approximate computing emerges as a promising approach to enhance the efficiency of compute-in-memory (CiM) systems in deep neural network processing. However, traditional approximate techniques often significantly trade off accuracy for power efficiency, and fail to reduce data transfer between main memory and CiM banks, which dominates power consumption. This paper introduces a novel probabilistic approximate computation (PAC) method that leverages statistical techniques to approximate multiply-and-accumulation (MAC) operations, reducing approximation error by 4X compared to existing approaches. PAC enables efficient sparsity-based computation in CiM systems by simplifying complex MAC vector computations into scalar calculations. Moreover, PAC enables sparsity encoding and eliminates the LSB activations transmission, significantly reducing data reads and writes. This sets PAC apart from traditional approximate computing techniques, minimizing not only computation power but also memory accesses by 50%, thereby boosting system-level efficiency. We developed PACiM, a sparsity-centric architecture that fully exploits sparsity to reduce bit-serial cycles by 81% and achieves a peak 8b/8b efficiency of 14.63 TOPS/W in 65 nm CMOS while maintaining high accuracy of 93.85/72.36/66.02% on CIFAR-10/CIFAR-100/ImageNet benchmarks using a ResNet-18 model, demonstrating the effectiveness of our PAC methodology.