Abstract:Phenotypic drug discovery has attracted widespread attention because of its potential to identify bioactive molecules. Transcriptomic profiling provides a comprehensive reflection of phenotypic changes in cellular responses to external perturbations. In this paper, we propose XTransferCDR, a novel generative framework designed for feature decoupling and transferable representation learning across domains. Given a pair of perturbed expression profiles, our approach decouples the perturbation representations from basal states through domain separation encoders and then cross-transfers them in the latent space. The transferred representations are then used to reconstruct the corresponding perturbed expression profiles via a shared decoder. This cross-transfer constraint effectively promotes the learning of transferable drug perturbation representations. We conducted extensive evaluations of our model on multiple datasets, including single-cell transcriptional responses to drugs and single- and combinatorial genetic perturbations. The experimental results show that XTransferCDR achieved better performance than current state-of-the-art methods, showcasing its potential to advance phenotypic drug discovery.
Abstract:Determining the structure of a protein has been a decades-long open question. A protein's three-dimensional structure often poses nontrivial computation costs, when classical simulation algorithms are utilized. Advances in the transformer neural network architecture -- such as AlphaFold2 -- achieve significant improvements for this problem, by learning from a large dataset of sequence information and corresponding protein structures. Yet, such methods only focus on sequence information; other available prior knowledge, such as protein crystallography and partial structure of amino acids, could be potentially utilized. To the best of our knowledge, we propose the first transformer-based model that directly utilizes protein crystallography and partial structure information to predict the electron density maps of proteins. Via two new datasets of peptide fragments (2-residue and 15-residue) , we demonstrate our method, dubbed \texttt{CrysFormer}, can achieve accurate predictions, based on a much smaller dataset size and with reduced computation costs.