Abstract:Recently, the square root principal component pursuit (SRPCP) model has garnered significant research interest. It is shown in the literature that the SRPCP model guarantees robust matrix recovery with a universal, constant penalty parameter. While its statistical advantages are well-documented, the computational aspects from an optimization perspective remain largely unexplored. In this paper, we focus on developing efficient optimization algorithms for solving the SRPCP problem. Specifically, we propose a tuning-free alternating minimization (AltMin) algorithm, where each iteration involves subproblems enjoying closed-form optimal solutions. Additionally, we introduce techniques based on the variational formulation of the nuclear norm and Burer-Monteiro decomposition to further accelerate the AltMin method. Extensive numerical experiments confirm the efficiency and robustness of our algorithms.