Abstract:Augmented reality assembly guidance is essential for intelligent manufacturing and medical applications, requiring continuous measurement of the 6DoF poses of manipulated objects. Although current tracking methods have made significant advancements in accuracy and efficiency, they still face challenges in robustness when dealing with cluttered backgrounds, rotationally symmetric objects, and noisy sequences. In this paper, we first propose a robust contour-based pose tracking method that addresses error-prone contour correspondences and improves noise tolerance. It utilizes a fan-shaped search strategy to refine correspondences and models local contour shape and noise uncertainty as mixed probability distribution, resulting in a highly robust contour energy function. Secondly, we introduce a CPU-only strategy to better track rotationally symmetric objects and assist the contour-based method in overcoming local minima by exploring sparse interior correspondences. This is achieved by pre-sampling interior points from sparse viewpoint templates offline and using the DIS optical flow algorithm to compute their correspondences during tracking. Finally, we formulate a unified energy function to fuse contour and interior information, which is solvable using a re-weighted least squares algorithm. Experiments on public datasets and real scenarios demonstrate that our method significantly outperforms state-of-the-art monocular tracking methods and can achieve more than 100 FPS using only a CPU.