Abstract:On-device recommendation is critical for a number of real-world applications, especially in scenarios that have agreements on execution latency, user privacy, and robust functionality when internet connectivity is unstable or even impossible. While large language models (LLMs) can now provide exceptional capabilities that model user behavior for sequential recommendation tasks, their substantial memory footprint and computational overhead make the deployment on resource-constrained devices a high risk proposition. In this paper, we propose OD-LLM, the first task-adaptive compression framework explicitly designed to provide efficient and accurate on-device deployment of LLMs for sequential recommendation tasks. OD-LLM uniquely integrates two complementary compression strategies: a low-rank structural compression algorithm which uses Singular Value Decomposition (SVD) to significantly reduce parameter redundancy in the model, and a novel tokenization normalization technique that better complements the low-rank decomposition process being used. Additionally, to minimize any potential performance degradation when using higher compression ratios, a novel progressive alignment algorithm is used to iteratively refine the parameters required layerwise in the target model. Empirical evaluations conducted on sequential recommendation benchmarks show that OD-LLM exhibits no loss in effectiveness when compared to the original recommendation model, when the deployed model size is halved. These promising results demonstrate the efficacy and scalability of OD-LLM, making this novel solution a practical alternative for real-time, on-device solutions wishing to replace expensive, remotely executed LLMs.
Abstract:In this paper, we investigate the challenge of integrating tables from data lakes, focusing on three core tasks: 1) pairwise integrability judgment, which determines whether a tuple pair in a table is integrable, accounting for any occurrences of semantic equivalence or typographical errors; 2) integrable set discovery, which aims to identify all integrable sets in a table based on pairwise integrability judgments established in the first task; 3) multi-tuple conflict resolution, which resolves conflicts among multiple tuples during integration. We train a binary classifier to address the task of pairwise integrability judgment. Given the scarcity of labeled data, we propose a self-supervised adversarial contrastive learning algorithm to perform classification, which incorporates data augmentation methods and adversarial examples to autonomously generate new training data. Upon the output of pairwise integrability judgment, each integrable set is considered as a community, a densely connected sub-graph where nodes and edges correspond to tuples in the table and their pairwise integrability, respectively. We proceed to investigate various community detection algorithms to address the integrable set discovery objective. Moving forward to tackle multi-tuple conflict resolution, we introduce an novel in-context learning methodology. This approach capitalizes on the knowledge embedded within pretrained large language models to effectively resolve conflicts that arise when integrating multiple tuples. Notably, our method minimizes the need for annotated data. Since no suitable test collections are available for our tasks, we develop our own benchmarks using two real-word dataset repositories: Real and Join. We conduct extensive experiments on these benchmarks to validate the robustness and applicability of our methodologies in the context of integrating tables within data lakes.