Abstract:The accurate segmentation of medical images is critical for various healthcare applications. Convolutional neural networks (CNNs), especially Fully Convolutional Networks (FCNs) like U-Net, have shown remarkable success in medical image segmentation tasks. However, they have limitations in capturing global context and long-range relations, especially for objects with significant variations in shape, scale, and texture. While transformers have achieved state-of-the-art results in natural language processing and image recognition, they face challenges in medical image segmentation due to image locality and translational invariance issues. To address these challenges, this paper proposes an innovative U-shaped network called BEFUnet, which enhances the fusion of body and edge information for precise medical image segmentation. The BEFUnet comprises three main modules, including a novel Local Cross-Attention Feature (LCAF) fusion module, a novel Double-Level Fusion (DLF) module, and dual-branch encoder. The dual-branch encoder consists of an edge encoder and a body encoder. The edge encoder employs PDC blocks for effective edge information extraction, while the body encoder uses the Swin Transformer to capture semantic information with global attention. The LCAF module efficiently fuses edge and body features by selectively performing local cross-attention on features that are spatially close between the two modalities. This local approach significantly reduces computational complexity compared to global cross-attention while ensuring accurate feature matching. BEFUnet demonstrates superior performance over existing methods across various evaluation metrics on medical image segmentation datasets.