Abstract:This paper presents a novel approach at the intersection of machine learning and number theory, focusing on the classification of prime and non-prime numbers. At the core of our research is the development of a highly sparse encoding method, integrated with conventional neural network architectures. This combination has shown promising results, achieving a recall of over 99\% in identifying prime numbers and 79\% for non-prime numbers from an inherently imbalanced sequential series of integers, while exhibiting rapid model convergence before the completion of a single training epoch. We performed training using $10^6$ integers starting from a specified integer and tested on a different range of $2 \times 10^6$ integers extending from $10^6$ to $3 \times 10^6$, offset by the same starting integer. While constrained by the memory capacity of our resources, which limited our analysis to a span of $3\times10^6$, we believe that our study contribute to the application of machine learning in prime number analysis. This work aims to demonstrate the potential of such applications and hopes to inspire further exploration and possibilities in diverse fields.
Abstract:Wildfires are a disastrous phenomenon which cause damage to land, loss of property, air pollution, and even loss of human life. Due to the warmer and drier conditions created by climate change, more severe and uncontrollable wildfires are expected to occur in the coming years. This could lead to a global wildfire crisis and have dire consequences on our planet. Hence, it has become imperative to use technology to help prevent the spread of wildfires. One way to prevent the spread of wildfires before they become too large is to perform early detection i.e, detecting the smoke before the actual fire starts. In this paper, we present our Wildfire Detection and Alert System which use machine learning to detect wildfire smoke with a high degree of accuracy and can send immediate alerts to users. Our technology is currently being used in the USA to monitor data coming in from hundreds of cameras daily. We show that our system has a high true detection rate and a low false detection rate. Our performance evaluation study also shows that on an average our system detects wildfire smoke faster than an actual person.