Abstract:Emerging applications such as Deep Learning are often data-driven, thus traditional approaches based on auto-tuners are not performance effective across the wide range of inputs used in practice. In the present paper, we start an investigation of predictive models based on machine learning techniques in order to optimize Convolution Neural Networks (CNNs). As a use-case, we focus on the ARM Compute Library which provides three different implementations of the convolution operator at different numeric precision. Starting from a collation of benchmarks, we build and validate models learned by Decision Tree and naive Bayesian classifier. Preliminary experiments on Midgard-based ARM Mali GPU show that our predictive model outperforms all the convolution operators manually selected by the library.
Abstract:In this work, a re-design of the Moodledata module functionalities is presented to share learning objects between e-learning content platforms, e.g., Moodle and G-Lorep, in a linkable object format. The e-learning courses content of the Drupal-based Content Management System G-Lorep for academic learning is exchanged designing an object incorporating metadata to support the reuse and the classification in its context. In such an Artificial Intelligence environment, the exchange of Linkable Learning Objects can be used for dialogue between Learning Systems to obtain information, especially with the use of semantic or structural similarity measures to enhance the existent Taxonomy Assistant for advanced automated classification.