Abstract:The rise of agentic AI systems, where agents collaborate to perform diverse tasks, poses new challenges with observing, analyzing and optimizing their behavior. Traditional evaluation and benchmarking approaches struggle to handle the non-deterministic, context-sensitive, and dynamic nature of these systems. This paper explores key challenges and opportunities in analyzing and optimizing agentic systems across development, testing, and maintenance. We explore critical issues such as natural language variability and unpredictable execution flows, which hinder predictability and control, demanding adaptive strategies to manage input variability and evolving behaviors. Through our user study, we supported these hypotheses. In particular, we showed a 79% agreement that non deterministic flow of agentic systems acts as a major challenge. Finally, we validated our statements empirically advocating the need for moving beyond classical benchmarking. To bridge these gaps, we introduce taxonomies to present expected analytics outcomes and the ways to collect them by extending standard observability frameworks. Building on these foundations, we introduce and demonstrate novel approach for benchmarking of agent evaluation systems. Unlike traditional "black box" performance evaluation approaches, our benchmark is built from agent runtime logs as input, and analytics outcome including discovered flows and issues. By addressing key limitations in existing methodologies, we aim to set the stage for more advanced and holistic evaluation strategies, which could foster the development of adaptive, interpretable, and robust agentic AI systems.
Abstract:Predicting the next activity in an ongoing process is one of the most common classification tasks in the business process management (BPM) domain. It allows businesses to optimize resource allocation, enhance operational efficiency, and aids in risk mitigation and strategic decision-making. This provides a competitive edge in the rapidly evolving confluence of BPM and AI. Existing state-of-the-art AI models for business process prediction do not fully capitalize on available semantic information within process event logs. As current advanced AI-BPM systems provide semantically-richer textual data, the need for novel adequate models grows. To address this gap, we propose the novel SNAP method that leverages language foundation models by constructing semantic contextual stories from the process historical event logs and using them for the next activity prediction. We compared the SNAP algorithm with nine state-of-the-art models on six benchmark datasets and show that SNAP significantly outperforms them, especially for datasets with high levels of semantic content.
Abstract:Business processes that involve AI-powered automation have been gaining importance and market share in recent years. These business processes combine the characteristics of classical business process management, goal-driven chatbots, conversational recommendation systems, and robotic process automation. In the new context, prescriptive process monitoring demands innovative approaches. Unfortunately, data logs from these new processes are still not available in the public domain. We describe the main challenges in this new domain and introduce a synthesized dataset that is based on an actual use case of intelligent process automation with chatbot orchestration. Using this dataset, we demonstrate crowd-wisdom and goal-driven approaches to prescriptive process monitoring.