Abstract:Information extraction (IE), one of the main tasks of natural language processing (NLP), has recently increased importance in the use of resumes. In studies on the text to extract information from the CV, sentence classification was generally made using NLP models. In this study, it is aimed to extract information by classifying all of the text groups after pre-processing such as Optical Character Recognition (OCT) and object recognition with the YOLOv8 model of the resumes. The text dataset consists of 286 resumes collected for 5 different (education, experience, talent, personal and language) job descriptions in the IT industry. The dataset created for object recognition consists of 1198 resumes, which were collected from the open-source internet and labeled as sets of text. BERT, BERT-t, DistilBERT, RoBERTa and XLNet were used as models. F1 score variances were used to compare the model results. In addition, the YOLOv8 model has also been reported comparatively in itself. As a result of the comparison, DistilBERT was showed better results despite having a lower number of parameters than other models.
Abstract:Text summarization is a fundamental task in natural language processing that aims to condense large amounts of textual information into concise and coherent summaries. With the exponential growth of content and the need to extract key information efficiently, text summarization has gained significant attention in recent years. In this study, LSTM and pre-trained T5, Pegasus, BART and BART-Large model performances were evaluated on the open source dataset (Xsum, CNN/Daily Mail, Amazon Fine Food Review and News Summary) and the prepared resume dataset. This resume dataset consists of many information such as language, education, experience, personal information, skills, and this data includes 75 resumes. The primary objective of this research was to classify resume text. Various techniques such as LSTM, pre-trained models, and fine-tuned models were assessed using a dataset of resumes. The BART-Large model fine-tuned with the resume dataset gave the best performance.
Abstract:Automatic keyframe detection from videos is an exercise in selecting scenes that can best summarize the content for long videos. Providing a summary of the video is an important task to facilitate quick browsing and content summarization. The resulting photos are used for automated works (e.g. summarizing security footage, detecting different scenes used in music clips) in different industries. In addition, processing high-volume videos in advanced machine learning methods also creates resource costs. Keyframes obtained; It can be used as an input feature to the methods and models to be used. In this study; We propose a deep learning-based approach for keyframe detection using a deep auto-encoder model with an attention layer. The proposed method first extracts the features from the video frames using the encoder part of the autoencoder and applies segmentation using the k-means clustering algorithm to group these features and similar frames together. Then, keyframes are selected from each cluster by selecting the frames closest to the center of the clusters. The method was evaluated on the TVSUM video dataset and achieved a classification accuracy of 0.77, indicating a higher success rate than many existing methods. The proposed method offers a promising solution for key frame extraction in video analysis and can be applied to various applications such as video summarization and video retrieval.
Abstract:In recent decades, mobile applications (apps) have gained enormous popularity. Smart services for smart cities increasingly gain attention. The main goal of the proposed research is to present a new AI-powered mobile application on Istanbul's traffic congestion forecast by using traffic density data. It addresses the research question by using time series approaches (LSTM, Transformer, and XGBoost) based on past data over the traffic load dataset combined with meteorological conditions. Analysis of simulation results on predicted models will be discussed according to performance indicators such as MAPE, MAE, and RMSE. And then, it was observed that the Transformer model made the most accurate traffic prediction. The developed traffic forecasting prototype is expected to be a starting point on future products for a mobile application suitable for citizens' daily use.