Intern
Abstract:Text summarization is a fundamental task in natural language processing that aims to condense large amounts of textual information into concise and coherent summaries. With the exponential growth of content and the need to extract key information efficiently, text summarization has gained significant attention in recent years. In this study, LSTM and pre-trained T5, Pegasus, BART and BART-Large model performances were evaluated on the open source dataset (Xsum, CNN/Daily Mail, Amazon Fine Food Review and News Summary) and the prepared resume dataset. This resume dataset consists of many information such as language, education, experience, personal information, skills, and this data includes 75 resumes. The primary objective of this research was to classify resume text. Various techniques such as LSTM, pre-trained models, and fine-tuned models were assessed using a dataset of resumes. The BART-Large model fine-tuned with the resume dataset gave the best performance.
Abstract:Named entity recognition (NER) is used to extract information from various documents and texts such as names and dates. It is important to extract education and work experience information from resumes in order to filter them. Considering the fact that all information in a resume has to be entered to the companys system manually, automatizing this process will save time of the companies. In this study, a deep learning-based semi-automatic named entity recognition system has been implemented with a focus on resumes in the field of IT. Firstly, resumes of employees from five different IT related fields has been annotated. Six transformer based pre-trained models have been adapted to named entity recognition problem using the annotated data. These models have been selected among popular models in the natural language processing field. The obtained system can recognize eight different entity types which are city, date, degree, diploma major, job title, language, country and skill. Models used in the experiments are compared using micro, macro and weighted F1 scores and the performance of the methods was evaluated. Taking these scores into account for test set the best micro and weighted F1 score is obtained by RoBERTa and the best macro F1 score is obtained by Electra model.