Abstract:In this paper, we propose a novel low-light image enhancement method aimed at improving the performance of recognition models. Despite recent advances in deep learning, the recognition of images under low-light conditions remains a challenge. Although existing low-light image enhancement methods have been developed to improve image visibility for human vision, they do not specifically focus on enhancing recognition model performance. Our proposed low-light image enhancement method consists of two key modules: the Global Enhance Module, which adjusts the overall brightness and color balance of the input image, and the Pixelwise Adjustment Module, which refines image features at the pixel level. These modules are trained to enhance input images to improve downstream recognition model performance effectively. Notably, the proposed method can be applied as a frontend filter to improve low-light recognition performance without requiring retraining of downstream recognition models. Experimental results demonstrate that our method improves the performance of pretrained recognition models under low-light conditions and its effectiveness.
Abstract:In recent years, significant progress has been made in image recognition technology based on deep neural networks. However, improving recognition performance under low-light conditions remains a significant challenge. This study addresses the enhancement of recognition model performance in low-light conditions. We propose an image-adaptive learnable module which apply appropriate image processing on input images and a hyperparameter predictor to forecast optimal parameters used in the module. Our proposed approach allows for the enhancement of recognition performance under low-light conditions by easily integrating as a front-end filter without the need to retrain existing recognition models designed for low-light conditions. Through experiments, our proposed method demonstrates its contribution to enhancing image recognition performance under low-light conditions.