Abstract:We propose an image-adaptive object detection method for adverse weather conditions such as fog and low-light. Our framework employs differentiable preprocessing filters to perform image enhancement suitable for later-stage object detections. Our framework introduces two differentiable filters: a B\'ezier curve-based pixel-wise (BPW) filter and a kernel-based local (KBL) filter. These filters unify the functions of classical image processing filters and improve performance of object detection. We also propose a domain-agnostic data augmentation strategy using the BPW filter. Our method does not require data-specific customization of the filter combinations, parameter ranges, and data augmentation. We evaluate our proposed approach, called Enhanced Robustness by Unified Image Processing (ERUP)-YOLO, by applying it to the YOLOv3 detector. Experiments on adverse weather datasets demonstrate that our proposed filters match or exceed the expressiveness of conventional methods and our ERUP-YOLO achieved superior performance in a wide range of adverse weather conditions, including fog and low-light conditions.
Abstract:This paper proposes a deep feature extractor for iris recognition at arbitrary resolutions. Resolution degradation reduces the recognition performance of deep learning models trained by high-resolution images. Using various-resolution images for training can improve the model's robustness while sacrificing recognition performance for high-resolution images. To achieve higher recognition performance at various resolutions, we propose a method of resolution-adaptive feature extraction with automatically switching networks. Our framework includes resolution expert modules specialized for different resolution degradations, including down-sampling and out-of-focus blurring. The framework automatically switches them depending on the degradation condition of an input image. Lower-resolution experts are trained by knowledge-distillation from the high-resolution expert in such a manner that both experts can extract common identity features. We applied our framework to three conventional neural network models. The experimental results show that our method enhances the recognition performance at low-resolution in the conventional methods and also maintains their performance at high-resolution.
Abstract:In recent years, significant progress has been made in image recognition technology based on deep neural networks. However, improving recognition performance under low-light conditions remains a significant challenge. This study addresses the enhancement of recognition model performance in low-light conditions. We propose an image-adaptive learnable module which apply appropriate image processing on input images and a hyperparameter predictor to forecast optimal parameters used in the module. Our proposed approach allows for the enhancement of recognition performance under low-light conditions by easily integrating as a front-end filter without the need to retrain existing recognition models designed for low-light conditions. Through experiments, our proposed method demonstrates its contribution to enhancing image recognition performance under low-light conditions.
Abstract:We discuss the geometry of rational maps from a projective space of an arbitrary dimension to the product of projective spaces of lower dimensions induced by linear projections. In particular, we give a purely algebro-geometric proof of the projective reconstruction theorem by Hartley and Schaffalitzky [HS09].