Abstract:Emergency response missions depend on the fast relay of visual information, a task to which unmanned aerial vehicles are well adapted. However, the effective use of unmanned aerial vehicles is often compromised by bandwidth limitations that impede fast data transmission, thereby delaying the quick decision-making necessary in emergency situations. To address these challenges, this paper presents a streamlined hybrid annotation framework that utilizes the JPEG 2000 compression algorithm to facilitate object detection under limited bandwidth. The proposed framework employs a fine-tuned deep learning network for initial image annotation at lower resolutions and uses JPEG 2000's scalable codestream to selectively enhance the image resolution in critical areas that require human expert annotation. We show that our proposed hybrid framework reduces the response time by a factor of 34 in emergency situations compared to a baseline approach.
Abstract:Distributed learning across a coalition of organizations allows the members of the coalition to train and share a model without sharing the data used to optimize this model. In this paper, we propose new secure architectures that guarantee preservation of data privacy, trustworthy sequence of iterative learning and equitable sharing of the learned model among each member of the coalition by using adequate encryption and blockchain mechanisms. We exemplify its deployment in the case of the distributed optimization of a deep learning convolutional neural network trained on medical images.