Abstract:Protein-protein interactions (PPIs) play a crucial role in numerous biological processes. Developing methods that predict binding affinity changes under substitution mutations is fundamental for modelling and re-engineering biological systems. Deep learning is increasingly recognized as a powerful tool capable of bridging the gap between in-silico predictions and in-vitro observations. With this contribution, we propose eGRAL, a novel SE(3) equivariant graph neural network (eGNN) architecture designed for predicting binding affinity changes from multiple amino acid substitutions in protein complexes. eGRAL leverages residue, atomic and evolutionary scales, thanks to features extracted from protein large language models. To address the limited availability of large-scale affinity assays with structural information, we generate a simulated dataset comprising approximately 500,000 data points. Our model is pre-trained on this dataset, then fine-tuned and tested on experimental data.
Abstract:The accurate prediction of changes in protein stability under multiple amino acid substitutions is essential for realising true in-silico protein re-design. To this purpose, we propose improvements to state-of-the-art Deep learning (DL) protein stability prediction models, enabling first-of-a-kind predictions for variable numbers of amino acid substitutions, on structural representations, by decoupling the atomic and residue scales of protein representations. This was achieved using E(3)-equivariant graph neural networks (EGNNs) for both atomic environment (AE) embedding and residue-level scoring tasks. Our AE embedder was used to featurise a residue-level graph, then trained to score mutant stability ($\Delta\Delta G$). To achieve effective training of this predictive EGNN we have leveraged the unprecedented scale of a new high-throughput protein stability experimental data-set, Mega-scale. Finally, we demonstrate the immediately promising results of this procedure, discuss the current shortcomings, and highlight potential future strategies.