Abstract:We present a nonlinear data-driven Model Predictive Control (MPC) algorithm for deep brain stimulation (DBS) for the treatment of Parkinson's disease (PD). Although DBS is typically implemented in open-loop, closed-loop DBS (CLDBS) uses the amplitude of neural oscillations in specific frequency bands (e.g. beta 13-30 Hz) as a feedback signal, resulting in improved treatment outcomes with reduced side effects and slower rates of patient habituation to stimulation. To date, CLDBS has only been implemented in vivo with simple control algorithms, such as proportional or proportional-integral control. Our approach employs a multi-step predictor based on differences of input-convex neural networks to model the future evolution of beta oscillations. The use of a multi-step predictor enhances prediction accuracy over the optimization horizon and simplifies online computation. In tests using a simulated model of beta-band activity response and data from PD patients, we achieve reductions of more than 20% in both tracking error and control activity in comparison with existing CLDBS algorithms. The proposed control strategy provides a generalizable data-driven technique that can be applied to the treatment of PD and other diseases targeted by CLDBS, as well as to other neuromodulation techniques.
Abstract:The recent wave of AI and automation has been argued to differ from previous General Purpose Technologies (GPTs), in that it may lead to rapid change in occupations' underlying task requirements and persistent technological unemployment. In this paper, we apply a novel methodology of dynamic task shares to a large dataset of online job postings to explore how exactly occupational task demands have changed over the past decade of AI innovation, especially across high, mid and low wage occupations. Notably, big data and AI have risen significantly among high wage occupations since 2012 and 2016, respectively. We built an ARIMA model to predict future occupational task demands and showcase several relevant examples in Healthcare, Administration, and IT. Such task demands predictions across occupations will play a pivotal role in retraining the workforce of the future.