Chair of Mathematics for Uncertainty Quantification, RWTH Aachen University
Abstract:We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems for which the observational model is based on partial differential equations and, consequently, is computationally expensive to evaluate. A-optimality is a widely used and easy-to-interpret criterion for the Bayesian design of experiments. The criterion seeks the optimal experiment design by minimizing the expected conditional variance, also known as the expected posterior variance. This work presents a novel likelihood-free method for seeking the A-optimal design of experiments without sampling or integrating the Bayesian posterior distribution. In our approach, the expected conditional variance is obtained via the variance of the conditional expectation using the law of total variance, while we take advantage of the orthogonal projection property to approximate the conditional expectation. Through an asymptotic error estimation, we show that the intractability of the posterior does not affect the performance of our approach. We use an artificial neural network (ANN) to approximate the nonlinear conditional expectation to implement our method. For dealing with continuous experimental design parameters, we integrate the training process of the ANN into minimizing the expected conditional variance. Specifically, we propose a non-local approximation of the conditional expectation and apply transfer learning to reduce the number of evaluations of the observation model. Through numerical experiments, we demonstrate that our method significantly reduces the number of observational model evaluations compared with common importance sampling-based approaches. This reduction is crucial, considering the computationally expensive nature of these models.
Abstract:In this study, we demonstrate that the norm test and inner product/orthogonality test presented in \cite{Bol18} are equivalent in terms of the convergence rates associated with Stochastic Gradient Descent (SGD) methods if $\epsilon^2=\theta^2+\nu^2$ with specific choices of $\theta$ and $\nu$. Here, $\epsilon$ controls the relative statistical error of the norm of the gradient while $\theta$ and $\nu$ control the relative statistical error of the gradient in the direction of the gradient and in the direction orthogonal to the gradient, respectively. Furthermore, we demonstrate that the inner product/orthogonality test can be as inexpensive as the norm test in the best case scenario if $\theta$ and $\nu$ are optimally selected, but the inner product/orthogonality test will never be more computationally affordable than the norm test if $\epsilon^2=\theta^2+\nu^2$. Finally, we present two stochastic optimization problems to illustrate our results.
Abstract:Filtering is a data assimilation technique that performs the sequential inference of dynamical systems states from noisy observations. Herein, we propose a machine learning-based ensemble conditional mean filter (ML-EnCMF) for tracking possibly high-dimensional non-Gaussian state models with nonlinear dynamics based on sparse observations. The proposed filtering method is developed based on the conditional expectation and numerically implemented using machine learning (ML) techniques combined with the ensemble method. The contribution of this work is twofold. First, we demonstrate that the ensembles assimilated using the ensemble conditional mean filter (EnCMF) provide an unbiased estimator of the Bayesian posterior mean, and their variance matches the expected conditional variance. Second, we implement the EnCMF using artificial neural networks, which have a significant advantage in representing nonlinear functions over high-dimensional domains such as the conditional mean. Finally, we demonstrate the effectiveness of the ML-EnCMF for tracking the states of Lorenz-63 and Lorenz-96 systems under the chaotic regime. Numerical results show that the ML-EnCMF outperforms the ensemble Kalman filter.