Abstract:This study evaluates the effectiveness of machine learning (ML) and deep learning (DL) models in detecting COVID-19-related misinformation on online social networks (OSNs), aiming to develop more effective tools for countering the spread of health misinformation during the pan-demic. The study trained and tested various ML classifiers (Naive Bayes, SVM, Random Forest, etc.), DL models (CNN, LSTM, hybrid CNN+LSTM), and pretrained language models (DistilBERT, RoBERTa) on the "COVID19-FNIR DATASET". These models were evaluated for accuracy, F1 score, recall, precision, and ROC, and used preprocessing techniques like stemming and lemmatization. The results showed SVM performed well, achieving a 94.41% F1-score. DL models with Word2Vec embeddings exceeded 98% in all performance metrics (accuracy, F1 score, recall, precision & ROC). The CNN+LSTM hybrid models also exceeded 98% across performance metrics, outperforming pretrained models like DistilBERT and RoBERTa. Our study concludes that DL and hybrid DL models are more effective than conventional ML algorithms for detecting COVID-19 misinformation on OSNs. The findings highlight the importance of advanced neural network approaches and large-scale pretraining in misinformation detection. Future research should optimize these models for various misinformation types and adapt to changing OSNs, aiding in combating health misinformation.
Abstract:The analysis of human motion as a clinical tool can bring many benefits such as the early detection of disease and the monitoring of recovery, so in turn helping people to lead independent lives. However, it is currently under used. Developments in depth cameras, such as Kinect, have opened up the use of motion analysis in settings such as GP surgeries, care homes and private homes. To provide an insight into the use of Kinect in the healthcare domain, we present a review of the current state of the art. We then propose a method that can represent human motions from time-series data of arbitrary length, as a single vector. Finally, we demonstrate the utility of this method by extracting a set of clinically significant features and using them to detect the age related changes in the motions of a set of 54 individuals, with a high degree of certainty (F1- score between 0.9 - 1.0). Indicating its potential application in the detection of a range of age-related motion impairments.